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Probabilistiv kinetics following the Pauli master equation without micro- 
scopic reversibility determines an asymptotic structure of macroprocesses 
in a coarse-grained phase space of many degrees of freedom. The structure, 
which is asymptotically realized, minimizes its irreversible decay rate among 
various candidates. This least irreversible decay rate is consistent with the 
assertion for the minimum K-entropy which has been argued to apply to the 
nonequilibrium asymptotic state. The irreversible decay rate is a state 
function characteristic of  macrostructure on a coarse-grained time scale. 
Macrofluctuations, which always appear around the asymptote as fluctu- 
ations of the state function, do not obey the central limit theorem, implying 
that fluctuations whose characteristic times are not less than some finite value 
are never excluded. 

KEY WORDS: Detailed balance; K-entropy; master equation; micro- 
scopic reversibility. 

1. INTRODUCTION 

1.1. Introductory Remarks 

N e a r  the  t h e r m a l  e q u i l i b r i u m  p o i n t  the  k ine t i c  e q u a t i o n  used  fo r  desc r ib ing  

the  p r o b a b i l i s t i c  k ine t ics  o f  m a c r o p r o c e s s e s ,  w h i c h  resul t  f o l l o w i n g  a ce r t a in  

p r o j e c t i o n  e l i m i n a t i n g  m i c r o s c o p i c  m o t i o n ,  (1'2~'2 m a y  s o m e t i m e s  be  subjec t  to  

1 Central Research Laboratories, Nippon Electric Company, Ltd., Kawasaki, Japan. 
2 Although a linear equation of collective variables is obtained with the use of a certain 

projection in Ref. 1, a nonlinear kinetic equation follows as for the distribution of  
collective variables. In the latter scheme the structure of the distribution is of more 
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the microscopic reversibility of Onsager. (3) In particular, if the microscopic 
reversibility, that is, the symmetry between conjugate transition probabilities, 
is kept in the Pauli master equation, the probability measure of finding a 
system in any one of the available macrostates will be equal, being consistent 
with the principle of equal weight (see Ref. 4, especially Appendix I). How- 
ever, it does not always occur that various kinetic processes off equilibrium 
are in accord with microscopic reversibility. 

Tomita and Tomita (5) have recently pointed out that a nonlinear Mar- 
kov process does not yield a strict detailed balance (6~,3 based upon micro- 
scopic reversibility and they proposed cyclic balance instead. Hence one may 
ask what sort of macroscopic characteristics on the whole would be available 
if microscopic reversibility does not hold. This is the problem we investigate 
in this paper. 

It is of fundamental importance for the study of kinetics on a macroscale 
to establish a probabilistic kinetic equation by applying a certain projection to 
microscopic mechanics, e.g., the Liouville equation. (2)'4 Examples of kinetic 
equations include the Fokker-Planck equations derived for a single-mode 
laser oscillation, (8) the Navier-Stokes fluid system, (9-11~ and interacting 
phonons. ~12)'5 Although such a kinetic equation must be found for each 
practical case, there still exists a macroscopic argument based upon the 
Markovian postulate. In particular, the Kramers-Moyal  expansion ~a~ 
applied to the master equation reveals various nonlinear phenomena off 
equilibrium for the case that the relevant macrovariables are extensive. (5,a4~ 
However, we shall not argue the derivation of the probabilistic kinetic equa- 
tion from microscopic mechanics in spite of its importance, and rather shall 
discuss what macroscopic properties could be expected supposing that 
microscopic reversibility does not hold for a given kinetic equation such as 
the Pauli master equation. 

We shall concentrate on the asymptotic behavior of macroprocesses in 
broken microscopic reversibility and on their fluctuations, because of the 

interest than the collective variables themselves. If one is allowed to divide various 
kinetic stages into two sets of slow and fast processes and also to suppose that only the 
slow process is responsible for the structural change in the distribution function, the 
master equation will result. A crucial aspect of this argument is seen in the assertion 
that the fast process may not interfere with the slow one. Also see Chapter 4 of Ref. 27. 

3 The classical Stosszahlansatz giving the probability distribution as proportional to 
phase space volume results in detailed balance only in the linear approximation. 

4 Some authors, including, for example, Ueyama, (v) have obtained the master equation 
in the so-called ),2t limit within the lowest perturbation expansion. It is, however, 
not clear whether the resulting master equation could deal with any slow process, 
some contributions of which are critically examined in Ref. 2. Also see Section 8 of the 
present paper and footnote 10. 

5 A Fokker-Planck equation follows from a nonlinear Langevin equation of many 
coupled modes with the use of the Gaussian-Markov ansatz. Also see Ref. 27. 
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complexities of the subject. The kinetics prior to reaching the asymptote is 
beyond the scope of this paper. 

Macroprocesses will be supposed to have a finite number of degrees of 
freedom. We shall further suppose that the dynamics is classical. Extension 
to the quantal case will be discussed later. 

Since only observable quantities are concerned, it would be impossible 
for a limited observer to locate the representative point of the finite system in 
phase space, that is, P space, in a pointwise manner. A coarse graining of I? 
space necessarily follows. One may thus regard P space as a set of partitions 
in such a manner that as tong as the representative point is found inside a 
given local element of the partitioned phase space, one could assign to the 
point only the name or the number of the coordinate fixed to the element and 
could not tell where inside the element the point is really found. The coordinate 
of the representative point in I ~ space becomes discrete instead of being 
continuous because of the limitations of an observer who is interested only in 
macroprocesses as a whole .  At this point one should note that the way of 
partitioning F space is specific to the observer and is by no means prepared 
a priori. 

One may imagine another limitation which inevitably accompanies the 
observer. Observation always takes place with the aid of an operation which 
integrates events appearing during a predetermined time interval which never 
vanishes and which is characteristic of the observer. Hence it would not be 
possible for the observer to track events occurring during a time interval less 
than the predetermined one. When the transition dynamics of the representa- 
tive point is followed in the partitioned I? space the observer cannot precisely 
keep up with a fast process in which the point transits from a partitioned 
element to another within a time less than the predetermined interval given as 
a coarse-grained time unit. 

As a result, two kinds of coarse graining necessarily follow. One is for 
the partitioning of I ~ space. The other is for time measurement. When asymp- 
totic behavior and its fluctuations are investigated for a system with a finite 
number of  degrees of  macroscopic freedom, coarse grainings for both phase 
space and time must be employed because of the finiteness of the observer. 
We discuss this in Section 2 in a stricter form which will be of use in the 
following sections. The coarse grainings which inevitably accompany a finite 
observer will be stated as a definition. A general theorem derived from the 
definition will play a central role in the remaining discussion. 

1.2. Brief Summary  

A nonequilibrium asymptotic structure of a system with a finite number 
of degrees of freedom has been argued to occur at a minimum point of the 
Krylov-Kolmogorov dynamic entropy or, equivalently, the Kolmogorov-  
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Sinai entropy, which is usually called the K-entropy. a5'16~ Although the 
original derivation is based upon a somewhat heuristic argument, the 
minimum K-entropy will be rederived in Section 3 following the theorem 
of Section 2. The K-entropy is simply a measure indicating the degree of 
stochastic instability, i.e., mixing, as one meets in the ergodic problem of 
orbits in a dynamical system. (17'18~ An irreversible transition of the repre- 
sentative point in the coarse-grained P space is a specific example of general 
mixing phenomena,  that is to say, a process of losing information. Here we 
use the term information in the sense of the Kolmogorov entropy of partition, 
which is a generalization of Shannon's original usage. (19~ The stated minimum 
K-entropy implies that the asymptotic structure would seem to a finite ob- 
server to be realized at a possible least amount  of  the associated K-entropy, 
which is another way of saying the rate of losing information characteristic 
of  the macrostructure through irreversible processes. 

The theorem of Section 2 enables us to find an asymptotic solution to the 
Pauli master equation of a representative point moving in the coarse-grained 
P space. The solution is presented in Section 4. One observes that the asymp- 
totic structure comprising macroprocesses without microscopic reversibility 
is realized in such a way that the representative point remains mostly inside a 
specific element of  the coarse-grained F space. The specific element is found 
to minimize the net transition probability per unit time for the representative 
point to transfer from inside to outside the element. This in turn proves and 
justifies the statement of  the minimum K-entropy for the case that proba- 
bilistic kinetics is governed by the Pauli master equation, since the net 
transition probability per unit time is just the rate of  losing information about  
the location of the representative point, apart  f rom a numerical factor. 

Macroprocesses without microscopic reversibility asymptotically con- 
stitute a macrostructure in which the representative point is found mostly in a 
small element of  F space accompanying the minimum rate of losing informa- 
tion. On the other hand, macroprocesses subject to microscopic reversibility 
give a macrostructure in which the point is found everywhere inside F space 
with equal probability, that is, the net transition probability per unit time 
f rom inside to outside a partitioned element is the same as that for the reverse 
transition. This would give an intuitive ground for understanding why a 
nonequilibrium macrostructure without microscopic reversibility carries 
specific information compared with structures satisfying the reversibility 
which would be common to most  near-equilibrium phenomena. 6 

6 The master equation resulting from the Hermitian ansatz of the interaction Hamiltonian 
exhibits microscopic reversibility (ef. Ref. 7). However, this would not be quite true 
since, if either a completely or an almost isolated system is the case, the adiabatic 
interaction on a macroscopic scale would no longer be Hermitian. Further discussion 
is given in Section 8 and in footnote 10. 
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One more specific aspect is that macroscopic fluctuations of structure 
around its asymptote do not obey the central limit theorem in the case of 
broken microscopic reversibility. 

Applications and discussions of a general nature are presented from 
Section 5 on. Macroprocess with olae degree of freedom are discussed in 
Section 5 within the scheme of the Fokker-Planck equation with one variable, 
as a specific example of the Pauli master equation. If  the Fokker-Planck 
equation does not exhibit microscopic reversibility in its associated F space 
subject to coarse graining, macrofluctuations whose correlation times are not 
less than some finite value would never be excluded. One thus finds that 3uch 
macroftuctuations are not subject to the central limit theorem and that these 
non-Gaussian fluctuations are extraordinarily enhanced near a critical point. 
Agreement with experiments is also confirmed to a certain extent. Macro- 
fluctuations are divided into two categories, linear and nonlinear. (2~ Non- 
linear macrofluctuations associated with nonlinear decay exhibit a logarithmic 
singularity in their spectral representation, showing a distinct contrast with 
linear macrofluctuations. 

When macroprocesses include two degrees of freedom or more a certain 
phase relationship will generally appear among them. We discuss the case of 
two degrees of freedom in Section 6. Absolute phase is not a directly observ- 
able quantity since one can measure only a relative phase difference from a 
certain reference point. In particular, phase dynamics can be described in terms 
of its time derivative, which is nothing but frequency. Macrofluctuations in a 
relative phase difference or, equivalently, in frequency could thus be fixed with 
the aid of the probabilistic kinetics of the macroprocesses without microscopic 
reversibility. 

As macroprocesses increase the number of coupled degrees of freedom 
to much greater than unity, a limited observer could not precisely follow each 
phase relation, because of the highly intricate nature of the couplings. One 
way in which a certain macroscopic observation could be made would be 
not to try to obtain information about each phase relation but to regard the 
macroprocesses as being in a random phase relation with each other. A brief 
discussion on this subject is presented in Section 7. One must note, however, 
that the random phase characteristic thus introduced is artificial and depends 
entirely upon the finiteness of the observer. 

One may think that probabilistic kinetics of macroprocesses having a 
large number of degrees of freedom could also deal with near-equilibrium 
phenomena. Consider a dompletely isolated system with N (>> 1) degrees of 
freedom. If  one can think of an appropriate projection which could produce 
a probabilistic kinetic equation with N '  (<  N) degrees of freedom eliminating 
only N - N '  (<<N) independent variables, the equation would describe the 
near-equilibrium phenomena of the almost isolated system after Landau. (21~ 
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We discuss in Section 8 that the probabilistic kinetic equation of the almost 
isolated system could not exhibit microscopic reversibility because adiabatic 
processes on a macroscale are characteristic of the completely isolated system. 
This would suggest that even in the near-equilibrium case there exists a 
certain kinetic process which does not exhibit symmetry between conjugate 
transition probabilities. The microscopic reversibility of Onsager ~3~ is not an 
only account for the macrokinetics even near equilibrium. Its drastic exempli- 
fication would be expected near the critical point of an equilibrium phase 
transition. 

All of the results thus obtained are based upon the viewpoint that an 
observer making theoretical predictions and practicing experiments is not 
unlimited with respect to both types of performance. When macroprocesses 
with many coupled degrees of freedom are prepared, one might wonder how 
each observer could fix his own way of coarse graining, and how common and 
objective agreements could be attained among different observers. Difficulties 
may lie not with the nonlinearity between observer and object as pointed out 
by Wigner (2m but rather with the finiteness of the observer. In spite of its 
fundamental importance, this problem is left unsolved. 

2. G E N E R A L  T H E O R E M  

We first introduce a phase space, that is, P space of classical macro- 
processes having N degrees of freedom. Because of the finiteness of the 
observer, the resulting coarse graining divides P space into a set of partitions 

{&} = r ,  i =  1, 2 .... (1) 

Although the way of partitioning is arbitrary depending upon the manner of 
observation, a particular partition in (1) will be supposed for now. When the 
representative point is found inside a partitioned element & the observer 
assigns to the point  only the coordinate number i and nothing else. Hence the 
subscript of the element is necessary and sufficient for .describing the state of 
the representative point. 

We next introduce a coarse graining of time which could apply only to 
the observer. For  this purpose a measure 

t '[&; T, TO] -- [T]/T (2) 

which is specific to the observer, is defined. The meanings of the symbols are 
as follows: We denote as a unit-continuous-event (UCE) of coordinate i the 
period that the representative point remains at i from the moment the point 
transits to i until the moment it leaves from i; [T] is the sum of the time 
durations of the UCE's of coordinate i during the time T. The time duration 
of a UCE of i is counted as zero if it is less than the coarse-grained time unit 
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ro employed by the observer. [T] is consecutively counted in units of ~-o over a 
sequence of time T. If two successive UCE's of i occur with time durations tl 
and t2, respectively, such that the time interval t' between them is < ~o, the 
successive events are regarded as if a single UCE of i with the time duration 
tl + t '  + t2 had occurred only in the case that [T] is counted. 

Since the asymptotic behavior of a macrostructure with N degrees of 
macroscopic freedom and the associated fluctuations will be treated, we must 
define the term macrostructure in a strict form. 

Definition. A macrostructure Si which continues to exist during the time 
T (_> ~'o) is fixed by the statement 

Ix[S~; T, to] = 1 (3) 

where the asymptotic macrostructure is obtained in the limit T--+ oe. 
This definition means that even if the representative point once at i 

leaves i, it returns by some means within a time interval less than to, whose 
size will be discussed for each practical case in the following sections. The 
observer is supposed to l~e unable to follow the fast transition dynamics of the 
point within such a small time interval less than ~'o. 

Let us introduce the probability measure cr h) for the two 
successive events. Namely, the event that the representative point is at 
coordinate i at time t = t~ is followed by another event that the point remains 
at the same coordinate until t = t2 (>  tl) without undergoing any transition, 
where 

f l  if the representative point is found at i at t = tl 
%(h) ~- otherwise 

We implicitly assume the presence of probabilistic kinetics of the representa- 
tive point in the coarse-grained I" space. In general, the probability measure 
P~(t2, t~) is not unaffected by the previous memory before t = t~. Further- 
more, we introduce another quantity 

Pc(SjIS~; T, To) :- %(t')Pj(T + t', t')/Pi(T + t", t") (4) 

where t '  and t" are arbitrarily chosen. 
As a result, one sees the following lemmas: 

Lemma A. 0 ~< ~[S; T, ~-o] ~< 1 for VS ~ {S,}. 

Lemma B. /x[S; T, to] + /x[S'; T, To] ~< /x[S w S ' ;  T, ~o] for VS, VS' c 
{S~} satisfying S n S '  = ~.  

Lemma C. Pc(Sj[S~; T, To) = 0 for V{/x[Sj; T, ~'o] = 0}. 

Lemma D. P~(SjlS,; T, To) r 0 for 3{/~[Sj; T, ~o] = 1}. 
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Lemma A is straightforward from the original definition (2). Since the 
representative point cannot be found simultaneously in both the regions S 
and S'  without any overlapping between the two when [T] is counted in a 
consecutive way, Lemma B also follows. For  any event satisfying the con- 
dit ion/ ,[Sj;  T, to] = 0 it never occurs that the representative point remains 
at coordinate j  any longer than ro without undergoing transition. This proves 
Lemma C. On the other hand, for a certain event satisfying/,[Sj; T, to] = I 
the possibility is not excluded that the representative point stays at j during 
the time T supposing that t '  is appropriately chosen so as to fulfill q~(t') = 1. 
Thus, Lemma D results. 

With the aids of Lemmas A - D  one can prove the following theorem: 

Theorem. Suppose/z[S~; T, ~0] -- 1, where x is an arbitrary coordinate 
among {i}. Then 

/,[S,; T, to] = 1 ~-Pc(VSy~,[S,; T, ro) = 0 (5) 

Proof If/,[S~; T, ro] = 1, then/x[VSje,; T, r0] = 0 because of Lemmas 
A and B. Thus, one sees Pc(VSj~[S,; T, to) = 0 from Lemma C. Next, 
suppose Pc(VSj,~I&; T, to) = 0 under the constraint /,[S~; T, r0] = 1. On 
the other hand, P~(S~[&; T, ~-o) # 0 follows for a certain event satisfying 
/*[Sx; T, to] = 1 because of Lemma D. I f x  # i, contradiction would occur. 
Thus,/~[S~; T, r0] = 1 results. Q.E.D. 

3. K - E N T R O P Y  

3.1. M a c r o s t r u c t u r e  at Its Asympto te  

Suppose that an asymptotic macrostructure S~ is realized in the form 

/x[S~; T - ~  0% to] = 1 (6) 

Any asymptote is so defined that it has a certain invariance with respect to 
temporal translation. Hence the probability measure P~(t2, tl) that the repre- 
sentative point found at i at t = tl remains until t = t2 (>  h) without under- 
going any transition satisfies 

P,(t2 + T~, h + T,) = P~(t2, q) (7) 

where T~ is a characteristic time representing the translational invariance. 
Here it is understood that T~ is a possible least time among those that satisfy 
(7) for any set of  t~ and t2 (>  h). Because of the property (7), the relation 

P~(nT~ + tl, (n - 1)T~ + tz) = P~(T~ + h ,  t~) (8) 

follows, where n is a positive integer. 
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If one observes the event/z[S~; nT~, To] -- 1, then n-fold same events will 
successively appear at each time interval of T~. Even probabilistic events are 
no exception. Hence the probability that the representative point stays at i 
all through the time n'T~ is just equal to the n-fold products of P~(T~ + h ,  tl) 
as follows: 

P~(nT~ + h ,  q)  = [P~(T~ + t l ,  h)]" (9) 

One must realize, however, that expression (9) comes solely from the assumed 
translational invariance (7) and not from an additional Markovian-like 
assumption, although the assertion for the presence of translational invariance, 
that is, asymptotic macrostructure, might either include or belong to the 
Markovian postulate. In fact, it is observed that any Markov process reaching 
its asymptote will satisfy the condition of the form (9) if a sufficiently large T~ 
is chosen. 

The probability function P~(T~ + tz, h)  is independent of t~ as 

P,(T~ + t~, h)  - P,(T3 (10) 

since the macrostructure S~ is subject to the translational invariance with 
period T~. Otherwise, an asymptotic structure with such an invariant property 
could not be realized. Hence one finds 

P~(t2, h) = {P~*(1)}%-tl~ (11) 

for t2 - h -- nT~ (n = 1, 2 , . )  with 

e,*(1) - {P,(T~)} z/r, (12) 

Expression (12) leads to 

(P,(mTO} 1linT, -- {P,(T~)} z/r, = P~*(1) (13) 

with the aid of (10), where m is a positive integer. This property will be used 
later. One more characteristic of the probability function P~(t2, h)  is 

{P,*(1)} Et~-qh+r~ < P,(tz, h)  <~ {P,*(1)} tt~-t~l~ (14) 

with 

[t2 - tl]~ ~- (nTi; nTi <<. t2 - tl < (n + 1)T~ for an integer n} 

which is a generalization of expression (11). 
Now, consider a macroscopic constraint which makes it possible to 

realize an asymptotic structure comprising macroprocesses with N degrees of 
freedom. The constraint will be supposed to be so macroscopic that any 
macrostructure S(,  i.e., 

t~[S~'; T--> ~ ,  To] -- 1 (15) 
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belonging to a local subset {S(} of the partitioned P space {&} as 

{&') c {&} (16) 

may not contradict the constraint. Here the auxiliary set {S('} leading to 

{&'} u {&"} = {&} (17) 
with 

{s/} c~ {&"} = 

is supposed to yield 

t*[S/' ; T--> oo, %] < 1 for Vj" ~ {i"} (18) 

under the same constraint. Thus, one may raise the following question: 
Which elements among the local set {&'} would be realizable as a physically 
stable structure in the sense of (15)? We shall try to answer to this question 
in the latter half of this section. 

On substituting (14) into the right-hand side of (4), one obtains the 
inequalities 

~0(t')(g*(1')} T + :5, {P~,(ll}T 
< PgS / I& , ;  T, to) < (19) 

{p*(1)}v {p.(1)}v + T., 

Furthermore, we introduce a subset {c~} belonging to {i'} as follows: 

{c,} = {{i'}; max[P*(1)]} (20) 

in which the number of coordinates included in {a} maximizing P*(1) is not 
necessarily unity. For the coordinate i' =/3 with/3 ~ {a}, the second inequality 
of (19) leads to 

lim P,(S/ISe;  T, ro) = 0 for Vj' 6{~z} (21) 
T-+oo 

since 
P~(1) < Pe*(1) (22) 

and 
lira {P~,(1)/PB*(1)} T = 0 (23) 

T ~ c o  

If one defines the local subset S<~} as 

S,~, = ~J  S. (24) 
B~{cO 

the relation 

lim Pc(VS/~,,~\{~I&~; T, ~-o) = 0 (25) 
T--+ oo 

follows, where {i'}/{~} denotes a difference set ({i'} - {~}). Hence, if the 
condition 

/.[S~>; T--> 0% %1 = 1 for 3{x} ~ {i'} (26) 



Macroprocesses in Broken Microscopic Reversibility 97 

is the case, the theorem of Section 2 yields 

/,[S~); T - +  0% z0] = 1 (27) 

The condition (26) simply states that there exists a certain macrostructure 
which could be realized asymptotically. We have already supposed that such 
an asymptotic structure really exists as expressed in (15). The macrostructure 
S(~) is thus shown to be the only candidate that is stable and asymptotic. 

Next, it must be exhibited that the structure S ~  is truly realizable. For  
this purpose, the size of the coarse-grained time unit r0 will be examined. On 
introducing the coordinate ~, satisfying 

--- {j ' ;  rain [P~(1) - P~(1)]} (28) 
i 'e(i 'I\{a} 

with P~(1)  -~ Pc*(1) for V/3 e {a}, one can make the quantity 

Pc(St  I S(~; %, Zo) - ~oj,(t')Py(zo + t', t')/Pr + t", t ') (291 

with j '  ~ {i'}\{~} arbitrarily small for a sufficiently large Zo in the range 

r0 >> r ,  -- {ln[P~(1)/e,*(1)]} -1 (30) 
and 

~'o >> Tj, for V.j' E {i'} (31) 

On the other hand, the ansatz (26) will lead to 

t~[S~x~; ~'o, ~-o1 = 1 (32) 

for almost every interval ~'o in an infinite time T--~ oe. Since the right-hand 
side of (29) becomes vanishingly small for 

70 >> max(~-~, Tj, for Vj' e {i'}) (33) 

the choice of To shown in (33) finally yields 

/*[S{,~; To, to] = 1 (34) 

for almost every interval TO with the aid of the theorem in Section 2. 

3.2, K-Entropy 

The entropy density of partition introduced by Kolmogorov has the 

form 

H --- - l o g 2 P  (35) 

for an event which occurs with probability P, where we refer only to the 
entropy of a particular event and not to that of the set of every event covering 
the whole probability space. This is just a simple generalization of Shannon's 
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entropy density of information. (19~ Also, the conditional entropy density of 
partition is definable as 

H(AIB)  = - log2[P(A1B)/P(B)] (36) 

where P(B) is the probability of the event B, and P(A [B) is that of the event B 
which is followed by the event A. Hence one can introduce the conditional 
entropy density of partition H~(t2, tl) that the representative point found at 
coordinate i at time t = tl in the coarse-grained F space keeps its coordinate 
until t = t2 (> tl) without undergoing any transition as follows: 

H~(t2, h)  - - log2  P~(t2, q)  (37) 

The conditional entropy density (37) is found to yield an invariant quantity 

h~--- sup( lim [H~(t2, q)/(t2 - h) ] ;  (38) 
L(tz-ti)~ ~o ) 

= - log~ P~*(1) (39) 

with the aid of (14). 
The quantity h~ is a measure of the increase in the conditional entropy 

density of partition per unit time. A similar quantity has already been 
investigated in the measure-preserving transformation with a real coefficient 
group, that is, flow. (23~ The K-entropy of Krylov, Kolmogorov, and Sinai is 
just the quantity by which the increase in rate of entropy of partition could 
be measured for a given dynamical system. (~7,za~ The original K-entropy, 
however, refers to the whole phase space. On the other hand, the invariant 
quantity h~ of (38) is characteristic of only a particular element of F space. 
Consequently, the quantity h~ should be understood as the K-entropy of the 
element S~ or, equivalently, as a K-entropy density. In general, the K-entropy 
density h~ would not remain constant all over the F space even if the related 
dynamics is ergodic in the whole phase space. We shall call the K-entropy 
density simply the K-entropy when there is no chance of confusion. 

Following the result presented in (20), one can establish the relation 

h /  /> h ~  for j '  c {i'} with h<~) - - l o g ~  P~}(1) (40) 

This predicts that the stable macrostructure which could asymptotically be 
realized among the various candidates, which satisfy 

/x[Sj,;T-+oO,,o] = 1 for V j ' ~ { i ' } ( ~ { i } )  (41) 

necessarily minimizes the associated K-entropy. 
The K-entropy h,, is an invariant quantity of the macrostructure 

~[S~,; T-+  o% ~o] = 1. This implies that the K-entropy could be regarded as 
a state function whose minimum fixes the structure to be realized asymp- 
totically. The only ansatz for this statement is the presence of the asymptote. 
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There  is an a rgument  that  a nonequi l ib r ium potent ia l  could be defined 

at each finite t ime interval.  (8,2~ Examples  have been found  in linear (25~ and 

nonl inear  cases. (11~ Given  a t ime interval  %or for defining the potential ,  the 

dis t r ibut ion of  f luctuations whose characterist ic times are less than %or would  

complete ly  be fixed by the potential ,  as in fluctuations a round equi l ibr ium. 

I f  macrof luctuat ions  whose characterist ic times are greater than %or are 

concerned,  one must  assume an addi t ional  macrokinet ics  to deal with such 

macrofluctuat ions.  However ,  there is no unique way of  determining the fo rm 

of  macrokinet ics ,  (6'24~ a l though hydrodynamics  has frequent ly been 

tried. (3'1a~,7 As an a t tempt  to avoid the indefiniteness associated with the 

macrokinet ics ,  one could derive a state funct ion which may include any macro-  

fluctuations. In fact, the K-en t ropy  is just  such a quanti ty.  

The  m i n i m u m  K-ent ropy ,  which is identical  to the least irreversible decay 

rate (cf. Section 4 and Ref. 16), has been argued to apply to any stable 

structure realized in the asymptot ic  t ime limit.  This in turn provides a selec- 

t ion rule that  the structure with less irreversible decay rate is more  stable in 

the course o f  t ime evolut ion,  o f  course, on a coarse-grained t ime scale. 

3.3. Fluctuations Around the M i n i m u m  K-Entropy 

A macros t ruc ture  S~, has its own K-en t ropy  hi, as a state function.  

A l though  the asymptot ic  structure is fixed by the s ta tement  min{h~,}, this 

7 It is always possible to fix the probability distribution function of fluctuations whose 
characteristic times are less than, say, %or, at each interval of 7pot. One might some- 
times be allowed to relate the distribution function to a sort of potential. However, the 
question would still remain as to how the potential, if one wishes to call it so, which 
is necessarily local in its time scale, may have its correlation with a macrokinetics or 
macrofluctuations whose characteristic time is greater than %o~. In principle, the 
potential which is characteristic of only the less macroscopic fluctuations cannot tell 
anything about macrofluctuations or, equivalently, slow process. If one holds the view 
that the potential should be related to a probability distribution function of relevant 
fluctuations, macrofluctuations whose characteristic times are greater than the time 
unit of fixing the distribution function will always be missed in the discussion since the 
time unit remains finite in any case. In order to overcome the present incompleteness, 
Glansdorff and Prigogine (25~ stress certain a priori nonlinear kinetic laws on a heuristic 
basis. Also, van Kampen (6~ simply assumes a phenomenological law, pointing out the 
indefiniteness of nonequilibrium potentials. Hence it would be rather misleading to 
assert the presence of a potential as a probability distribution function available to any 
macrofluetuation. All one can do with such macrofluctuations is to follow them as 
time goes on. The K-entropy is a state function fixed to a macrofluctuation which 
appears as a once and for all event along the irreversible time axis. 

Even if one succeeds in obtaining a probabilistic kinetic equation capable of any 
siow process, it would be inappropriate to say that a potential as a probability distribu- 
tion function of any fluctuation exists unless the contribution from macrofluctuations 
certainly vanishes. For example, the time-dependent Ginzburg-Landau equation 
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never excludes fluctuations with finite duration around the point of minimum 
K-entropy. This is because even if 

/z[S,.,; T, to] = (T  - r ' ) / r  with T' > 0 (42) 

the asymptotic condition 

lira I~[S~,~;T, r0] = 1 (43) 
T ~ o ~  

will hold so long as T'  is finite. 
We shall consider fluctuations in the K-entropy, though these might not 

always be observable unless a certain effort is exerted in this direction. 
The probability function Pi,(t + t l ,  tl) leads to 

2-  h,,{rt],, + r,,) < Pi,(t + h ,  h )  <- 2 -  ht'[t]i" (44) 

because of (14) and (39). Expression (44) gives the upper and the lower 
bounds of the probability that the state with the K-entropy hi, continues to 
exist during the time t without undergoing any transition. Hence the average 
of the deviation (hi, - h{~), which continues over the interval oft ,  over various 
possible states has the form 

((hi, - h~,}))t = ~i" (hi, - h~)Pi , ( t  +t,,)t', t ') (45) 
~i" Pi,(t + t", 

This expression is a kind of ensemble average only over the events that remain 
unchanged during the time t. If  one chooses as such a time interval 

t >> max(r, ,  Tj, for Vj' ~ {i'}) (46) 

expression (45) gives 

(~h)t  - ((h~, - hc~))t = fo  (3h) 2-~ d(3h) (47) 
f o  2 - ~ t  d(~h) 

where the degeneracy of the macrostates having the same K-entropy is 
supposed not to affect the observation. The final result yields 

(~h) t  = 1/(t In 2) (48) 

where the constraint of time in (46) must be noticed. 
A principal feature of the present result (48) is that fluctuations whose 

correlation times are not less than some finite value would never be excluded, 
exhibiting distinct contrast with fluctuations subject to the central limit 
theorem. This suggests that the asymptotic structure of the macroprocess is 
realized as an accumulation of macrofluctuations in the low-frequency limit. 

assumes a free energy functional. (z6~ It is, however, by no means evident why one could 
neglect macrofluctuations in deriving the TDGL. Macrofluctuations gain their crucial 
importance near critical points. See Section 8. 
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The only condition for the appearance of lasting fluctuations is that 

{~} c {i'} and {~} r {i'} (49) 

in expression (20), otherwise any relative difference h~, - h(~ would vanish. 
In fact, the requirement (49) will be seen not to contradict broken microscopic 
reversibility as discussed in the next section. 

One can also imagine fluctuations in the characteristic time of the 
translational invariance. The characteristic time T ~  which is supposed to 
exist might be equal to any T~, for i '  ~ {a} or a common multiple among some 
of them. If macrofluctuations of the characteristic time T(~ occur, one could 
express the fluctuation phenomena as 

r~, = r ~  + ~ r ~  (50) 

where T(*~ is the characteristic time representing an asymptotic macro- 
structure with the minimum K-entropy, and 8T~ is a slowly varying part of 
the instantaneous characteristic time T<~ satisfying 

The ratio of the probability that the deviation ~T~ continues over the time t 
(>>T~) to that of fluctuation-free event is found to be 

P c ( 3 T ~ ,  t) = {P~,~(1)}t/r(~/{P~(1)}t/r(% for t >> T*~ (52) 

with the aid of (12) and (20), where the strong inequality 

I(~/0T~))P~(1) 3T~,I << P~)(1) (53) 

is noticed because of (51). Since the fluctuation-free state is an asymptotic 
one, we have the inequality 

P~(~T~), t) ~< 1 (54) 

which, in turn, gives the constraint 

~T~) /> 0 (55) 

Hence the stochastic average of the square of the fluctuation ~T~,~ which 
continues over the time t yields 

(~T(~r) t =- 

* 4 

[In * 2 t ~ for t >> T~*~, % (56) P~.~(1)] 
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One can write expression (56) in terms of relative fluctuations as 

((3T~,~/T~)2)t = [2(T~)2/(h~,~ In 2)2](1/t 2) 

where we used the expression in (40). 

(57) 

4. PAULI  M A S T E R  E Q U A T I O N  

Given a partition of I? space as 

{S~} = P, i =  1, 2 .... (58) 

let us suppose that the representative point of the finite system with N degrees 
of freedom is well described in terms of only the set of discrete coordinates {i} 
and time t within the coarse graining presently employed. We shall impose 
on a prospective macrostructure appearing as its asymptote a stronger 
condition than that of a simple translational invariance. A Markov process 
will be supposed which is subject to the Pauli master equation 

(O/Ot)P(i, t) = ~ W(i+-j)P(j,  t) - ~ W(j~-  i)P(i, t) (59) 
j r  j r  

concerning only the discrete coordinates {i} and time, where P(i, t) is the 
probability density of finding the representative point at coordinate i and 
W(i +-j) is the probability of transition from j to i per unit time. The sym- 
merry property giving the microscopic reversibility 

W(i<---j) = W(j+- i) (60) 

will not be assumed. 
The probability function P~(t2, tl) introduced in Section 2 leads to 

P~(t2, t l ) =  e x p [ - f s  2 W(i)dt] (61) 

with 

since the 
equation 

with 

W ( i ) -  ~ W(j+--i) (62) 

representative point found at coordinate i follows the kinetic 

(O/Ot)P(i, t) = - ~ W(j<-- i)P(i, t) (63) 
jq=i 

P ( j , t ) - -O  for V j #  i (64) 
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The quantity P~*(1) of (12), which plays a role of figure of merit for deter- 
mining a macrostructure as asymptotically realizable, is expressible as 

P~*(1) = lim {P~(T)} 1/T (65) 
T ~ o o  

because of the property (13). As a result, we obtain 

Pi*(1) = exp[ -  (W(i))]  (66) 
with t , T  

(W(i))  = lira ( l / T ) [  W(i) dt (67) 
T--+ oo J o  

If the transition probabilities {W(i+-j)} are independent of time, as will 
often be the case, expression (66) reduces to 

P~*(1) = exp[ -  W(i)] (68) 

The result (20) predicts that if there exists a macrostructure 

tz[S{~; T-+  0% To] = 1 for {~} ~ {i} (69) 

the subset {.} must be 

That is to say 
{(z} = ({i}; max[P~*(1)]} 

{~} = ({i}; min[( W(i))]} 

(70a) 

Next, we shall investigate a sufficient condition under which the macro- 
structure (69) subject to (70) is truly realizable. For this purpose, we introduce 
the quantity 

which measures the probability of transition from anywhere except i to i 
per unit time. If the inequality 

(W(i))  < ( l~(i)> (72) 

is satisfied, the transition from i to anywhere else would occur less frequently 
than the reverse transition from anywhere else to i. Any transition process 
must be balanced by its counterpart in the asymptotic limit. This, however, 
by no means implies that each transition must be in a strict detailed balanceJ 5~ 

Now, suppose two characteristic times 

~-(i -+ i) and ~-(i ~ i) (73) 

Here the quantity r( i-+ i) is the mean recurrence time from the moment the 
representative point transits from anywhere else to i until the moment the point 
returns to i after having undergone transition from i to anywhere else, and 
z(i+-+ i) is the average holding time over which the representative point stays 

(70b) 
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at i within one period r ( i -+  i). With the aid of the characteristic time r(i++ i), 
the asymptotic balance between the transition from i to anywhere else and 
its reverse is expressible as 

or, equivalently, 

( W ( i ) )  = (fie(i)) e x p [ -  (W(i))r(i+-+ i)] (74) 

r(i+-+ i) = (1/(W(i)))  ln(( f ie(i))~(W(i))) (75) 

Needless to say, the characteristic time r( i++ i) vanishes for any i if the sym- 
metry relation (60) resulting in 

( W ( i ) )  = (fie(i))  for Vie {i} (76) 

is the case. One also observes r(i+--~ i)  = 0 in the case that 

( W ( i ) )  > ( I~( i ) )  (77) 

In order to estimate the magnitude of r(i ---> i) in (73), let us consider the 
probability 

( ~ )  Pco,t(Vj # i; t2, tl) (78) 

for an event v (=  1, 2,...) that the representative point is never found at 
coordinate i from the moment tl until t2 (>  h). Hence it follows that 

p(v) +~. oo~ttvJ # i; t + t ,  t ') [maxj,~{P~-*(1)}] t 
P~(t + t', t') < C {p.(1)} t (79) 

where C is a positive constant independent of time t as seen from (14). As a 
particular case of the inequality (79), one obtains 

( v )  �9 t P~ont(vjC{~,};t+ t ,  t') < c{P,*(1)}' (80) 
P(~>(t + t', t') {P~*,~(1)} t 

in which the quantity Pr*(1), which is less than P~(1) ,  has already been 
introduced in (28). 

If  the time t satisfies the inequality 

t >> {ln[Pg)(1)/P,*(1)]} -1 ( -  r r) (81) 

the right-hand side of (80) almost vanishes. The probability that the repre- 
sentative point can never be found on any of the coordinates belonging to {~} 
of (70) throughout the time interval much greater than ry would thus become 
vanishingly small compared with the probability that the representative point 
can be found on any one of {a} for even a moment during the interval. Hence 
if one chooses the coarse-grained time unit ro in the range 

ro >> max(r , ,  Tj for Vje {i}) (82) 
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where Tj is the fundamental period of the time-dependent transition 
probability W(j), the mean recurrence time T({a} ---> {a}) will satisfy 
r({a} ~ {a}) < %. A similar discussion has already been developed with 
regard to (28)-(34). This will prove the statement 

/x[S~}; T - +  o% r0] = 1 (83) 

if the inequality (ff~(fi)} - (W(fi)} > 0 holds. In fact, once the representa- 
tive point is found at any one of {a}, the point is expected to remain at {a} 
during the time 

1 < l/V(fi)) (>  0) for fl s {a} (84) T({a} ~-~ {a}) ,,, < W-(~ In <--W~)> 

on average, as seen from (75) (cf. Ref. 16). 
As a result, one finds the asymptotic solution P~s~mp(i, t) to the Pauli 

master equation (59) of the form 

p~ymp(x,t)=~lo for x = {a} (85) 
for x ~ {i}\{a} 

only in the sense of 

(10 for x = { a }  (86) 
/x[Sx; T--~ oo, To] = for x e {i}\{a} 

where the following two constraints must be satisfied: 

( W(p)} - < W(f~)} > 0 for fie {a} (87) 

T0 >> max [ min (( W(j)> - { W(fi)}) , T~ for Vj c {i} (88) 
k]e(O\{a} 

If the inequality (87) is violated, a trial by which the solution of the form 
(85) could be retained is to employ another way of partitioning P space as 

{S,*} = F, i* = 1, 2,... (89) 

instead of (58) so that the inequality (1~(/3")} - (W(fi*)} > 0 could survive 
in the revised coordinate system {i*}. 

If 
rain {( W(j)} - ( W(fi)}} + 0 (90) 

je{O\{~) 

in (88) due to a change in external constraints which fix the set of transition 
probabilities { W(i <--- j)}, the structure & satisfying (90) could also participate 
in the stable asymptotic structure. In fact, the critical-point behavior giving 
rise to a rearrangement of asymptotic macrostructure would be common to 
phase changes on a macroscale. 
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The discussions on the K-entropy and its fluctuations around the mini- 
mum developed in the previous section are also applicable to the present 
Markovian system. In fact, if microscopic reversibility (60) does not hold, 
one can obtain 

{a} c {i} and {a} r {i} (91) 

following (70). This is the very condition under which fluctuations of macro- 
structure not subject to the central limit theorem could be observed, as seen 
from (45)-(48). 

5. A P P L I C A T I O N  I: ONE DEGREE OF F R E E D O M  

We shall apply the general method developed in the scheme of the Pauli 
master equation to a specific example found in the Fokker-Planck equation 
with one degree of freedom. Its relevance to experiments will also be argued. 

5.1. General  Discussion 

Consider the Fokker-Planck equation with one degree of freedom 

~T 8 82 
P(A,  t) = ~ [g(A)P(A, t)] + ~ [h(A)P(A, t)] (92) 

where P(A,  t) is the probability density of finding a macroscopic variable A, 
which is real, at time t, and g(A) and h(A) are functions of the variable A. 
The minimum time unit 

~-F~, (93) 

for observing the Fokker-Planck behavior never vanishes. 
On introducing a coarse graining denoted as 2xA as a unit for measuring 

the variable A, expression (92) within O(2xA) yields 

8 p(A ,  t) = 1 85 ~ [g(A + AA)P(A + AA, t) - g(A)P(A, t)] 

1 [h(A + AA)P(A + AA, t) - 2h(A)P(A, t) 
+ S - ~  

+ h(A - AA)P(A - AA, t)] 

= W(A +--A + AA)P(A + AA, t) 

+ W(A<-- A - AA)P(A -- AA, t) 

- rv(A, ~XA)P(A, t) (94) 
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with 

W ( A  +--A + AA) =_ g(A AA + AA) + h (AAA 2 +  AA)  (95) 

W ( A  +-- A - AA)  - h(A - AA) 
AA 2 (96) 

2h(A) 
W ( A ,  AA) g(A) + (97) 

= &A AA 2 

We shall further suppose the inequalities 

W ( A  +- A + AA) > O, W ( A  +- A - AA)  > O, 

W ( A ,  AA) > 0 (98) 

which will turn out to be quite plausible in practical cases. 
The Fokker-Planck equation (94) is a specific example of the Pauli 

master equation (59). If  one applies the results (85)-(88) to the present case, 
the asymptotic solution to Eq. (94) leads to 

in the sense of 

with 

gasymp(A, t )~  {10 forf~ [A[A -- Aml Aml > <~ �89189 AA AA (99) 

tx [ A m ++_ �89 A A ; T -+ oo , -r o ] = t lo 

W(Am + AA, AA) > O, 

for IA - Am I ~< -~-AA (100) 
for I A - A m [  > �89 

W(Am - AA, AA) > 0 (101) 

where the following two constraints must be taken into account: 

IYV(Am, AA)  -- W(A,~, AA) > 0 (102) 

with 

17/(A, AA) =_ W ( A  <-- A + AA) + W ( A  ~-  A - AA)  (103) 

and 

~-o >> [W(Am + AA, AA)  -- W(Am,  AA)] -1 (104) 

The argument A m + �89 AA of the measure/x[Am _+ �89 AA, T--+ o% 70] implies 
that the macroscopic variable A is found in the range 

Am -- �89 AA < A <. Am + �89 AA (105) 
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I f  both the functions g(A) and h(A) are differentiable, the conditions (101) 
and (104) will be written as 

A = A,, 92 W(A, AA) A = An ~W(A, AA) = 0, > 0 (106) 
c~A cgA 2 

and 

[I ~2W(A, AA) A=A,~ ] - i  T0 >> ~A 2 (AA) 2 (107) 

respectively. 
One more consideration which is specific to the present Fokker-Planck 

equation concerns the size of the coarse graining AA. The probability measure 
which must be minimized in the asymptotic limit is also dependent upon the 
size AA which the observer employs. I f  the macrostructure 

IX[Am +_ �89 AAm, T--+ oo, ~'0] = 1 (108) 

is realized for AA = AAm, the theorem of Section 2 yields 

lim Pc(A~ + p AAm + �89 AAmlAm +_ �89 AAm; T, To) = 0 

with p = 
satisfy 

(109) 

+ 1, __ 2 ..... Hence the asymptote which should be observed must 

OW(Am, hA) 
O----~A) ~A=aA,, = 0 (if any) (110) 

with 

Po(3A, t) =- PA~ + Oa,~A~(t) (1 14) 
P A~,ZXAm( t ) 

with 

~2W(Am, AA) AA=AAm  (AA)2 > 0 (111) 

Here the size of  the coarse graining AAm must be sufficiently small since the 
Fokker-PIanck equation (94) follows by neglecting terms of the order 
O(AA) or higher. 

Fluctuations around A = Am are expressed in terms of the function 
PA,AA(I), which measures the probability that the variable A keeps its value 
without any fluctuations over the time t, as 

Pa,Aa(t) = exp[--W(A,  AA)t] (112) 

as seen from (61). The mean square of  fluctuations in which A deviates from 
Am by 3A during the time t can be expressed as 

(~A2)t -_ f~-o~ (~A)2Pc( 3A, t) d(~A) (113) 
Po( A, t) a(SA) 
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This is an ensemble average of macroscopic events each of which continues 
during the time t. If the probability function W(A, AAm) is differentiable at 
A = Am, the averaged fluctuation intensity (3A2)t gives 

1 1 
(SA2)t = [~= W(A AA m)IaA2]IA = A~, 7 (115) 

On the other hand, if W(A, AAm) is not differentiable at A = Am, expression 
(113) yields 

= ([Wa(Am 2, AAm)] 2 (aA2)~ 

with 

WA(A=*, kAm) = lim 

+ [WA(A=-, &Am)] 2 (t16) 

[a W(A, AAm)/aA] 
A-+a~,*0 (117) 

The time t appearing in (113) must satisfy the inequality 

t >> rFs, (118) 

along with 

t >> ro (119) 

since a probabilistic kinetics whose characteristic time is less than rFe of (93) 
has already been averaged out. 

Next it will be shown that the mean square of fluctuations (SA2)t can be 
related to a correlation function of 8A(t'), although in a very restricted sense. 
One can write the fluctuation 8A(t') in the form 

with 

aA(t') = aA>Xt') + aA <~(t') 

lira ( l /T)  [SA>~(t') + 8A<~(t')] dt '= 0 

Here the fluctuation 8A >,(t') satisfies 

8A>~(t" + t') - 8A>,(t') = 0 

if 

for 0 < t" < s  

aA >,(t' + 0) # a a  >~(t' - 0) 

(120) 

(121) 

(122) 

and 8A<s(t') represents other less macroscopic fluctuations than those 
involved in 8A >~(t'). 

When a time average is involved, one could always imagine the presence 
of a low-pass filter because of an inevitable high-frequency cutoff associated 

(123) 
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with any measurement. I f  the cutoff frequency is of  the order of I/s, one can 
approximate expression (120) by 

3A(t') = ~A>s(t') (124) 

only from an observational viewpoint. 
The time correlation function 

fo 3At 2 = lim ( l /T)  3A(t' + t )3A( t ' )d t '  (125) 
T - - *  oO 

would be replaced approximately by 

lira ( l /T)  3A >s(t' + t) 3A>s(t') dr' (126) 
T - - +  cx~ 

if one measures the quantity 3At 2 considering only the low-frequency com- 
ponents which can pass through such a low-pass filter with a cutoff frequency 
of ~ 1/s. Hence, if the strong inequality 

t << s (127) 

holds, the measurable quantity 3At 2 as a time average of 3A(t' + t )3A(t ' )  
could be interpreted as a stochastic average of 3A 2 keeping its value during 
the time t since SA itself follows a probabilistic kinetics. This is also because 
any member constituting the ensemble of  stochastic events would necessarily 
last over a much longer time than the fixed time t. Only under the constraint 
(127) could one expect an approximate equality 

(3A2)t = 3At 2 (128) 

An immediate consequence obtained from expression (115) is that if the 
probability function W(A, 2xA) is differentiable twice at A = Am, as is often 
satisfied in nonlinear kinetics, the fluctuation intensity of  macrofluctuations 
(3A2)t, which would sometimes be interpreted as the time correlation 
function in the sense of (128), will have an inverse time characteristic ~2~ 
except for the trivial case of  W(A, zXA) = const. This would give a low- 
frequency singularity of logarithmic divergence in the spectrum. On the 
other hand, it is seen from expression (116) that if the probability function 
W(A, AA) (#cons t )  is not differentiable twice at A = Am, as will be ex- 
perienced in linear kinetics, the fluctuation intensity has a t -2 characteristic 
instead of t -  1. One readily notes that the t -  2 characteristic in the correlation 
function does not lead to any low-frequency singularity in its spectral repre- 
sentation. Since the intensity proportional  to t-1 will become much greater 
than that proportional  to t -2 for increasing t, it is concluded that any non- 
linear contribution to a sufficiently long-time behavior cannot be neglected 
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no matter how small its strength might be compared with that of linear 
process. The further implication of this will be discussed in Section 5.5. 

5.2.  B r o w n i a n  M o t i o n  

If  one puts in the Fokker-Planck equation 

g(A) = U (129) 

h(A) = D (130) 

where both U and D are positive constants, the resulting equation 

(O/Ot)P(A, t) = (~/OA)[UP(A, t)] + (~2/~A2)[DP(A, t)] (131) 

governs a particular Brownian motion. In the coarse-grained representation 
one obtains (94) with 

W ( A + - A  + AA) = (U/AA) + (D/AA 2) (132) 

W(A +- A - AA) = (D/AA 2) (133) 

W(A, AA) = (U/AA) + (2D/AA 2) (134) 

An immediate consequence is 

I~(A, AA) - W(A, AA) = 0 (135) 

for any A and AA, where I~(A, AA) is given in (103). Relation (135), as a 
specific form of (76), does not contradict the presence of microscopic reversi- 
bility in the coarse-grained F space, although this is one dimensional in the 
present case. If the one-dimensional space is not unlimited, the asymptotic 
solution will have the well-known form 

P~symp(A, t) = const (136) 

as a realization of the principle of equal weight. Fluctuations with the inverse 
time characteristic as shown in (45)-(48) never appear. 

5.3. Linear Fokker-Planck Equation 

If  one replaces the function (129) by 

g(A) = alA with al > 0 (137) 

a linear Fokker-Planck equation 

(O/Ot)P(A, t) = (D/OA)[azAP(A, t)] + (e2/#A2)[DP(A, t)] (138) 
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in the sense of van Kampen (13) will follow. The set of transition probabilities 
(95)-(97) will be expressed as 

W(A <--A + AA) = a~(AAA + AA) + AA 

D 
W(A+-  A - AA) = AA 2 (139) 

W(A, AA) alA 2D 
= S-X + AA - - - z  

Since one readily observes 

ff'(A, AA) -- W(A, AA) = al (140) 

the right-hand side of which is always positive, the probabilistic kinetics of 
the macrovariable A in the coarse-grained phase space does not obey micro- 
scopic reversibility. 

One more specific feature about the Fokker-Planck equation (138) is 
that it is invariant under the reflection A -+ - A .  Hence we shall consider 
only the case 

a /> 0 (141) 

The reflection symmetry enables us to find 

Am = 0 (142) 

with the aid of (101). The size of coarse graining AAm remains indefinite, 

AAm: indefinite (143) 

since one cannot find a finite &Am which would lead to the minimization in 
(110). Hence the asymptotic solution to the linear Fokker-Planck equation 
(138) gives 

P~symp(A _+ 1 AAm, t) = (10 forf~ [A[[AI >~< �89 AAmAAm (144) 

in the sense of 

fl0 for ]A] ~< 1AAm (145) 
I~[A + �89 AAm; T-+ 0% ~-o] = for IAI > �89 ~ar. 

under the constraint 

I"o >> l/a1 (146) 

The size of AAra could be fixed arbitrarily depending upon what sort of 
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measurement may be taken by each relevant observer. The fluctuation in- 
tensity (3A2)t in (113) leads to 

(~A2)t = 4(AA2m/a~2)(1/t 2) (147) 

following expression (116), in which the time interval t must satisfy the 
inequality 

t >> 7Fe, ~-0 (148) 

being similar to (118) and (119). 
We shall concentrate only on fluctuations. If one considers the proba- 

bilistic kinetics of only microscopic fluctuations averaged over the time 
interval r~r and neglects any macrofluctuation whose characteristic time is 
greater than rFe, one obtains an asymptotic solution P~y~p(A, t) to (138) 
having the Gaussian form 

P~y~n,(A, t) = (a~/2~rD) ~t2 exp[ -  (a~/2D)A 2] (149) 

The mean square of fluctuations 3A averaged over the Gaussian probabilistic 
space (149) leads to 

(3A2)e = D/a~ (150) 

in comparison with expression (147). One must, however, distinguish between 
the macrofluctuations, which give the fluctuation intensity of the form (147) 
with the characteristic time much greater than ~'Fe, and the microscopic ones 
subject to a sort of central limit theorem resulting in the Gaussian distribution 
(149). 

The linear Fokker-Planck equation (138) is related to a linear Langevin 
equation of the form ~27> 

(d/dt)A(t)  = - a ~ A ( t )  + R(t)  (151) 

where R(t)  is a random force whose correlation time is less than rFp. Follow- 
ing an ensemble average, which might be equivalent to an infinite-time 
average, one obtains the spectral representation of (151) as 

with 
<A2(~))en~ = <R2( ,~) )o .~ / (~  ~ + al  ~) (152) 

f" (A2(oJ))ens - (A ( t  + t')A(t'))ense -~~176 dt (153) 
c o  

(R2(oJ))en~ - (R ( t  + t')R(t'))en~e -~~ dt (154) 

Since the correlation time of R(t)  is always less than rFp, the spectral intensity 
(153) gives 

(A2(o0)en~ ~ const for o~ << min{al, 1/rrp} (155) 
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On the other hand, the macrofluctuations with the correlation function (147) 
in the sense of (128) will yield a linear frequency dependence for 

~o << min{1/r0, 1/rrp} (156) 

because of 

(SA2) t  oc l i t  2 for t >> rFv, r0 (157) 

Hence one observes that the Lorentzian-shaped spectrum (152) based 
upon an ensemble average of any event appearing in an infinite time interval 
never coincides with the spectrum based upon the correlation function (147) 
in the sense of (128) following the ensemble average of only macroevents each 
of which keeps its own structure during a finite time interval. This, however, 
is by no means a contradiction since there is no reason for an ensemble 
average of any event appearing in an infinite time interval to agree with the 
similar average of only macroevents continuing over a finite time. Since it 
would not be possible to prepare an ensemble of macroevents the duration t 
of each of which approaches infinity, the resulting fluctuations among the 
macroevents could no longer be expected in the limit t--> oo. In fact, the 
intensity (147) of  macrofluctuations, which are characteristic only of the 
ensemble average of macroevents continuing over the time t, would vanish 
for t -+  oe. However, the time needed for fixing each macroevent does remain 
finite for any experimental observation. 

One should note that the linear Fokker-Planck equation is not con- 
sistent with the statement of  the central limit theorem. Only after the ansatz 
is employed that macrofluctuations with characteristic time greater than r~e 
in (93) and r0 can be discarded will a sort of central limit theorem be repro- 
duced. So long as microscopic reversibility does not hold in the coarse- 
grained P space, as exemplified in the case of the linear Fokker-Planck 
equation (138), macrofluctuations whose correlation times are not less than 
some finite value could never be excluded. This observation also agrees with 
the fact that the linear Fokker-Planck equation as a Sturm-Liouville operator 
has a uniform distribution of its eigenvalues. (14~ 

5.4. Non l inear  F o k k e r - P l a n c k  Equat ion 

We shall replace the linear function in (137) by 

g(A)  - a lA + a2A 2 + aaA a (158) 

where nonlinear terms higher than A 4 will not be considered. The corre- 
sponding nonlinear Fokker-Planck equation yields 

~t ~ 92 
P ( A ,  t) = - ~  [(aiA + a2A 2 + aaAa)p(A, t)] + ~-~  [DP(A,  t)] 

(159) 
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Although the present choice by no means includes all possible nonlinear 
phenomena following Fokker-Planck equations, certain experimental results 
could be explained within the framework of (159), as will be discussed. 

C a s e L  a l r  0, a2 > 0, a n d a 3 = 0 .  
The asymptotic value of A gives 

Am = - al/2a2 (160) 

following (106). The size of coarse graining AA must satisfy 

AA < 8a2D/al 2 (161) 

because of the condition W(Am, AA) > 0. In fact, AA must always be a 
sufficiently small quantity. The intensity of fluctuations {3A2)t in (113) 
reduces in the present case to 

{3A2>~ = (AA/2a2)(1/t) (162) 

Non-Gaussian fluctuations, whose correlation function in the sense of (128) 
has an inverse time characteristic, are seen to diverge as as 1 for a2 -+ + 0. 

Case II. a~ = 0, a2 r 0, and as > 0. 
Following the same procedures as before, one obtains 

A,, = 0, (3A2)t = (AA/2a2)( t / t )  for a2 > 0 (163) 

and 

with 

Am = -2a2/3aa, (3A2)t = -(zXA/2a2)(1/t)  for a2 < 0 (164) 

AA < - 27a32 D/2a23 

The fluctuation intensity (~A2)t diverges as la21-1 for a2 --+ _+ 0. 

Case I lL  al # O, a2 = 0, and as > 0. 
This particular case follows from the nonlinear Langevin equation of 

van der Pol type 

(d/dt)A(t)  = - a l A ( t ) -  a3A3(t) + R(t)  (165) 

where R(t)  is a random force. As has been shown in the case of a single-mode 
laser oscillation, (8> the Langevin equation (165) leads to the Fokker-Planck 
equation (27~ 

~t 0 02 P(A ,  t) = g-~ [(alA + aaA3)P(A, t)] + g - j  [DP(A,  t)] (166) 

The coefficient D depends upon the random force R(t). 
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and 

The asymptotic value of A and the associated macrofluctuations yield 

4 AA 2 1 
Am = O, (3A2)~ - t2 for al > 0 (167) 

a l  2 

{ _ a l ] l t 2  AA{  3a811/21 for al < 0 
Am = \ 3aa] ' (3A2)t = ~ \ - - ~ - ~ ]  7 

(168) 

with AA < - (3D/a l ) ( -3a3/a l ) l /L  Macrofluctuations increase their intensity 
as a f  ~ for al --> + 0  and as lal]-1/2 for a~ ---> - 0 .  In either case, non-Gaussian 
fluctuations diverge at the critical point al = + 0. This will determine a 
critical threshold for laser oscillation if the Fokker-Planck equation (166) 
applies to a single-mode laser. 

Furthermore, one could suppose that the nonlinear Fokker-Planck 
equation of van der Pol type (166) would govern macroscopic kinetics of 
oscillations in many cases, specifically for amplitude fluctuations. Non- 
Gaussian fluctuations have been observed near the threshold of electrical 
oscillation. (28~ There is also an observation that current fluctuations are 
critically enhanced near the onset of Gunn  oscillations. ~29~ If  one follows the 
ansatz that probabilistic kinetics of  oscillations on a macroscale be subject 
to the nonlinear Fokker-Planck equation (166) derived from the modified 
van der Pol equation (165), the observations of  both non-Gaussian fluctuations 
and their divergences near the critical point might be explained in terms of 
macrofluctuations whose correlation functions have a long-time tail of  
inverse-time or inverse-squared-time characteristics. However, there is no 
justification for saying that the single-mode kinetics would be sufficient for 
describing the cooperative phenomena near the critical point, s 

5.5. Remarks on Sma l l -Paramete r  Expansions 

It sometimes occurs that the Fokker-Planck equation includes a small 
parameter E as in 

D P(A,  t) = 0 02 0~ - ~  [g(A)P(A, t)] + e ~ [h(A)P(A, t)] (169) 

In fact, this expression can be derived from the Kramers-Moyal  expansion of 
the Pauli master equation in continuous phase space by neglecting higher than 

6 In case of oscillations, one needs at least two degrees of freedom, which sometimes 
reduce to amplitude and phase (~ (see Section 6). The coupling between the two modes 
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third-order  differentials. (la) One observes two approximations in solving (169) 
which would seem to be rather independent  o f  each other. One is to express 
the stochastic variable A(t) as 

A(t) = y(t) + dl2x(t) (170) 
with 

= - g ( y )  (171) 

where y(t) represents an orbit  of  secular mot ion  with the neglect o f  the terms 
O(e). (13) The other is to include the contr ibut ion o f  order e in the secular 
mot ion  by supposing the Gaussian distribution (1~ 

Pa(A, t) = [2zrea(t)]-112 e x p { - [ A  - y(t) -- ~u(t)]2/2~(t)} (172) 

Following van Kampen,  (~3) the Fokke r -P lanck  equation with respect to 
the stochastic variable x in (170) a round  the secular mot ion  y(t) is expressible 
as 

0 {[  + 1 1,2,, 2 + l~g,,,(y)xS + ...1 tg'(y)x ~E g (y)x -~ ~ P~(x, t) = ~x 

} • Py(x, t) + ~ {[h(y) + el/2h'(y)x +-..]P~(x, t)} 
(173) 

For  simplicity, we discard the terms greater than x 3 in the first bracket on 
the r ight-hand side o f  (173) and those greater than x in the second one, 

~t P~(x, t) = ~ g ' (y)x  + �89 ~ g " ( y ) x  ~ �9 

+ ~--~-~2h(y).}Py(x,t) (174) 

In  the linear approximation,  neglecting the term x 2, one obtains the intensity 
o f  macrofluctuat ions in x as 

(x2)~ ~' = {4 Ax2/[g'(y)]2}(1/t ~) (175) 

with the aid o f  (147), where Ax is the size o f  coarse graining. On the other  
hand,  if the nonlinear term x 2 is also considered, the fluctuation intensity in 
x will be 

(x2}~ 2) = [Ax/d/2g"(y)](1/t) for g"(y) > 0 (176) 

would become sufficiently influential near the critical point since a coherent relation- 
ship between the two modes is finally established beyond that point. Hence it may be 
tempting to regard the collective dynamics of the two coupled modes near the critical 
point as that of interacting clusters each of which is a locally coherent state of the two 
modes. Both the size and the lifetime of such a cluster would diverge on approaching 
the critical point. See Ref. 37. 
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following (162). Hence the time interval t during which the linear Fokker-  
Planck equation may be influential compared with the nonlinear one in (174) 
must satisfy 

<x2)p ) >> <x2)~ 2~ (177) 
This gives 

t << {4g"(y)  Ax / [g ' ( y )12}d  12 ~ c 112 (178) 

As a result, the linear Fokker-Planck equation obtained by employing the 
decoupling between the secular motion and fluctuations as shown in (170) 
with the use of the measure c 1/2 would remain valid only in a small time 
interval of order d/2 and could not deal with macrofluctuations with charac- 
teristic times greater than a time of ~r  ~/2. This also suggests that any 
nonlinear effect, no matter how small its strength might be, could finally over- 
come a linear effect so long as macrofluctuations lasting for a long time are 
concerned. A principal result remains unchanged even if a cubic term in (173) 
is taken into account. 

The Gaussian ansatz (172) of Kubo et al., ~1~ however, includes a certain 
correction to the secular motion within the order E. The secular motion y ( t )  
and its correction Eu(t), within order E, and the variance ca(t) are subject to 

~(t)  = - g ( y )  (179) 

e(t)  = -  2g'(y)a + h(y )  (180) 

~t(t) = - - g ' ( y ) u  -- �89 (181) 

Although the time needed for fixing the probability function (172) is of order 
of r~e in (93), another characteristic time rm~oroa of macrofluctuations in the 
correction term u(t)  to the secular motion and in the variance ca(t) will be seen 
in the form 

a ~ 1/Ig'~s,mp(y)[ (182) Trnaoro 

from expressions (180) and (181), where g'asymv(Y) represents a value of g ' ( y )  
in the asymptotic limit. Certain macrofluctuations are included in the scheme 
of (172), specifically those with the characteristic time rm~oroa of (182). How- 
ever, the Fokker-Planck equation (169) or (92) never excludes macro- 
fluctuations whose correlation times are not less than some finite value so 
long as the broken microscopic reversibility shown in (101) and in (102) holds. 
Macrofluctuations with characteristic time greater than r~o~ o a  of (182) are not 
covered by the Gaussian ansatz (172). 

6. A P P L I C A T I O N  I1: T W O  DEGREES OF F R E E D O M  

Consider the coupled Langevin equations with two degrees of macro- 
scopic freedom as 

( d / d t ) X ( t )  = - g ( X ,  Y)  + R~(t)  (183) 

(d /d t )  Y ( t )  = - h ( X ,  Y)  + Ry( t )  (184) 
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in which the random forces Rx(t) and Ry(t) acting on macrovariables X(t) 
and Y(t), both of which are real, exhibit themselves as contributions from 
microscopic variables imbedded in a heat reservoir. We shall employ a coarse 
graining in time whose unit 

~xy (185) 

is supposed to be so coarse that the macrokinetics by the unit of ~-~y may be 
Markovian undergoing Gaussian fluctuations. Here the functions g(X, Y) 
and h(X, Y) represent systematic parts. 

The Langevin equation is a slight modification of a nonlinear kinetic 
equation which one frequently meets in, say, work on autocatalytic reac- 
tions, (~4) though in the latter, random forces are not usually considered. 
Heat reservoirs always play two roles. One is as an absorber for various 
irreversible processes and as a supplier of macroscopic currents. The other is 
as an agent providing microscopic and incoherent stimuli to relevant macro- 
processes. Hence the latter contribution should also be taken into account. 
At this point one must note that random forces may not be totally arbitrary 
provided that a certain constraint is assumed such as the conservation law 
encountered in the Lotka-Volterra system. (a~ 

On averaging the coupled Langevin equations (183) and (184) over a 
short time of the order of ~-~ in (185), one obtains the Fokker-Planck equa- 
tion(27) 

~tP(X, Y; t) : {~g(X, Y).+ ~h(x,  g). 

02 02 } 
+ ~ D x . + ~ D y .  P(X, g;t) (186) 

where P(X, Y; t) is a probabilitiy density at (X, Y), and Dx and D, are 
positive constants depending on the random forces Rx and R~, respectively. 
Suppose that the unit A U for measuring X and Y is sufficiently small that 
(186) may be written as a difference equation as (94); an asymptotic macro- 
structure which is in broken microscopic reversibility would be realized at a 
maximum of 

[ tT(2)+t~ 
P(*2)(1)---- exPl-(1/T~=))), 1 

with 

w(x, • Y, Au) dt] (187) 

W(X, AU; Y, AU) = g(X, Y) 2Dx h(X, Y) 2Dy (188) 
/ x ~  + ~ + A----F-- + ~U  - - - z  

because of the minimum K-entropy (70), where the time T(2) is a character- 
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istic time representing a translational invariance expressed in (7). We have 
not written the right-hand side of (187) in the reduced form 

exp[ l im - ( l / T ) f o  T W(X, AU; Y, AU) dt I (189) 

since fluctuations in the characteristic time T(2) will be examined, if any. 
The system with two degrees of freedom keeps a phase relation between 

the macrovariables X and Y. If  a certain invariance holds for temporal 
translation, the phase relation will also exhibit such an invariance35~ Hence 
fluctuations in the characteristic time T(2) would correlate with those in the 
phase relation. 

If the period T(2) deviates only slightly from its asymptotic value T(*) by 
aT, 

T,~, = T<*)+ aT, T(*, >> I~rl (190) 

during the time t (>>T(2)), one can calculate the mean square of fluctuations 
(ST2)t following the general formula (56). The result is 

2(T~*))' 1 
(ST2)t = [In P~)m(1)] 2 t z for t >> T(*) (191) 

with 

and 

P~)m(1) -- max[P(~)(1)] 

If one introduces the quantities 

co o -= 27r/T(*) 

(192) 

expression (191) reduces to 

(193) 

(195) 

in which 8T << T~m. The newly defined quantity 8~ is just a measure of the 
difference between the instantaneous frequency 2rr/T(2) and the fluctuation- 
free one COo. Hence phase fluctuations can be observed as frequency fluctua- 
tions. The resulting fluctuations in frequency around the asymptote do not 
obey the central limit theorem since their correlation function in the sense of 
(128) has the t -2 characteristic, suggesting that the largest correlation time 
is by no means restricted to a finite value. A specific example of experiments 
for measuring relative phase differences and their fluctuations is discussed in 
Ref. 31. 

(8o~2)t = {8~21[lnPg)m(1)12)(ll t2) 

8oJ = (2rr/T<2)) - ~o0 (194) 
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7. APPLICATION II1: N DEGREES O F  FREEDOM (N>> 1) 

Let us investigate a Markov process with N (>> 1) coupled degrees of 
macroscopic freedom 

{Xl(t), X2(t),. . . ,  XN(t)} (196) 

Following the general discussion developed in Section 4, the asymptotic 
macrostructure S ~  of (69) having the least amount of K-entropy imposes on 
the N macrovariables the constraint 

{Xl(t), X2(t),.. . ,  XN(t)} c S~} (197) 

In the t~-space representation one could perform observations more micro- 
scopically than in the P-space representation, in which only the representative 
point is followed. We shall consider the problem of how the macrokinetics of 
the representative point is related to that of each individual of N variables, 
all of which are supposed to be real. 

One could consider N ( N -  1)/2 independent phase factors O~j(t) 
defined as 

tan 0~j(t) - Yj( t ) /X~(t)  (198) 
with 

| = �89 - @u(t) (199) 

Since we are interested in an asymptotic macrostructure in which a certain 
invariance of temporal translation holds, the phase factor @u(t) satisfies 

O~j(t") - @u(t') = | u + t") - @,j(T~j + t') (200) 
with 

Tji - T,j (201) 

where T~j is an unknown characteristic time exhibiting the invariance. Each 
phase factor | interacts with all the remaining phase factors because of 
the assumed nonvanishing couplings among them. 

We consider the cross product X~(t ')Xj(t ' )  averaged over a sufficiently 
large time T as 

~ t + T  

R,j(t)  - (1/~) X,( t ' )Xj( t ' )  dt '  (202) 

The product is also expressible as 

X,( t ' )Xj( t ' )  = �89 sin 2| (203) 

with 

Au( t '  ) - [X~2(t ') + Xj2(t')] 112 (204) 

with the use of (198). 
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On the other hand, the translational invariance expressed in (200) leads 
to the reduced form 

@u(nZu + t') - Ou(t '  ) = (n - 1)[Ou(Z~ j + t') - @u(t')] (205) 

with n = 1, 2, . . .  Hence for a sufficiently large n the quantity R u in (202) 
leads approximately to 

R u = (l/n) � 89  u + t') sin 2 @ u ( k T  u + t') (206) 

in which it must be noted that even if the limit n ~ oo is taken, this should be 
understood in the sense of 

lira (nTu /T)  ,~ 1 (207) 

On recalling the Jacobi's theorem, 9 one readily finds 

R u ~  0 for (1/2=)[@u(T u + t') - @~j(t')] (208) 
an irrational number 

since A~.(t), which is always positive and finite, exhibits a certain translational 
invariance whose characteristic time might not necessarily be T u. 

The result expressed in (208) is just the statement for the presence of 
phase mixing, although it is a weak one in the language of ergodic theory. (~7~ 
If  one considers the subset of macrovariables 

{X~,(t')} with {i'} ~ (1, 2, 3,..., N) (209) 

satisfying 

(1 /2=)[e , , j , (7~i , j ,  + t ' )  - e , , ; , ( t ' ) ]  
an irrational number for Vi', Vj'  ( #  i ')  ~ {i'} (210) 

a random phase characteristic resulting from 

R~,s, --+ 0 for i ' , j ' ( # i ' ) e { i ' }  (211) 

will necessarily follow for the subset so long as a sufficiently large T in (202) 
is taken. Phase mixing among macrovariables could be regarded as turbulence. 

Phase relations among the macrovariables {Xi(t)} are not always involved 
in every observation. In some cases only the set of power 

t + ~  / .  

_~2(t) - (1/2P)t X~(t')X~(t') dt ' ,  for i = 1, 2, 3,..., N (212) 
~tt 

may be investigated, where .g~2(t) is defined at each interval of a sufficiently 
large time i#. Kinetics of the power {.g~2(t)} will be examined in the following. 
The time unit of the kinetics is T. 

See Appendix I of Ref. 17. 
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Let us introduce the probability measure 

P(A, t) for A c p (213) 

in the phase space F spanned by the set of coordinates {_~fl}, in which p(A,  t) 
denotes the probability of finding the power with the structure {~2} c A at 
time t. Since the set {)7~ 2} is obtained as a result of a certain projection elimin- 
ating irrelevant variables such as 

~ 
t + T  

(X,(t)Xj(t)) =- (l/T) X~(t')Xj(t') dt', i # j (214) 

the probabilistic kinetics of P(A, t) will necessarily result because of  a lack of 
fine information. The time unit for defining P(A, t) is also 2~. 

A macroscopic property of the probability function P(A, t) is its con- 
servation in the form 

(d/dt) P( , t) d/~(A') = 0 (215) 

where tz(A') is the volume measure of the element A'. On introducing a coarse 
graining for the volume measure, one obtains 

(d/dt)P(A, t) + Y = 0 (216) 
with 

1 d 
Y = / , ( k )  dtJv_ 6 P(A', t) d/,(k') (217) 

where/~(A) is a sufficiently small quantity compared with/,(F). The first term 
on the left-hand side of (216) leads to 

a a ~  = (218) d P ( k ' t ) = ~ t  P ( A ' t ) +  ~ - ~  2 P ( A ' t )  at 

Furthermore, we shall introduce a small unit .~2 for measuring any member 
of the set {)7~2}, leading to the approximate equality 

(0/a~2)P(A, t) = (1/3~2)[P(A + k~, t) - P(A, t)] (219) 

where the arguments of P(A + A~, t) are identical to those of P(A, t) except 
for replacing )7~ 2 by )~2 + ~2. 

Hence one can write (216) in the form 

@/Ot)P(A, t) = ~ W(A +- A + A,)P(A + A,, t) - W(A)P(A, t) -- Y 
i 

with 
W(A +- A + A 0 _ - (1 / )~  2) aXfl/at 

w(A) =_ (1/2 =) ay?/at 
i 

(220) 

(221) 

(222) 
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If  the probabilistic kinetics presented in (220) is Markovian, the quantity 
W(A) in (222) is just the irreversible decay rate of the structure {.~2} c A 
since Ydoes not include the term P(A, t). This process is equivalent to a so- 
called diffusion approximation. We have chosen t r in (212) as a time unit for 
describing the kinetics. So long as T is sufficiently large, the phase mixing 
property shown in (208) would give plausible arguments for the establishment 
of Markovian kinetics. 

If  the Markovian postulate is approved, the least irreversible decay rate 
will determine the most probable asymptotic structure. In fact, turbulence 
as an asymptotic structure of many coupled degrees of freedom is argued 
within the present scheme of phase mixing. 

8. A P P L I C A T I O N  IV :  E Q U I L I B R I U M  S T A T I S T I C A L  M E C H A N I C S  

A completely isolated system Soo~p with Neomp (>> 1) degrees of freedom 
is sometimes referred to when one considers statistical mechanics. Since the 
isolated system has a Hamiltonian Hoomp which is Hermitian, its eigenvalue is 
real. For a given eigenvalue E there is a set of degenerate eigenstates, which 
are, of course, macroscopic, 

{li: E)eomp}, i = 1, 2, 3 .... (223) 
with 

comp(E: i]j: E)oo~p = 0 for i # j (224) 

where oo~p(E: i[ is the Hermitian conjugate to l i: E)oo~p. The orthogonality 
(223) prevents any transition between Ii: E>oo~p and [j: E)oo~p if i # j. This 
forbiddenness would not reflect the real physical characteristics of macro- 
scopic states. Hence one would be motivated to introduce an almost isolated 
system instead of the former completely isolated one, after Landau. (21) 

Let us suppose an almost isolated system S~,m with N~lm degrees of 
freedom inside the system Soomp satisfying 

(Noo~p - N~,m)/Noo~p << 1 (225) 
and 

N~ux -= Noo~p - Naarn >> 1 (226) 

where the auxiliary system S~ux has N~x degrees of freedom. We shall 
further introduce the Hamiltonians H~I~ and H~x for the systems S~a~ and 
S~,x, respectively. If  there were no interaction between S~,m and S~,x, the 
total Hamiltonian Hoomp for the completely isolated system would be 

Hoo~ /4(0) (227) 
with 

n~o~ = H ~  + H~x (228) 
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Since the energy o f  the system Soo=p mus t  be conserved,  one ob ta ins  

E = E~=(i) + E~.x(j) 
with 

H~imli} = Ea~(i)[i},  i = 1, 2, 3 .... 

where {1i>} 

(229) 

(230) 

H~,uxlj},: = E~,u,~(j)[j}x, j = 1, 2, 3 .... (231) 

and  {[J}x} are  the  o r t h o n o r m a l  eigenstates wi th  the energies 
{E~im(i)} and {E~ux(j)} for  the two independen t  systems S~1~ and  S~u~, 
respectively.  

One should,  however,  note  tha t  in terac t ions  between S~,m and S ~  could  
never be excluded.  F u r t h e r m o r e ,  such in terac t ions  a lways occur  t h rough  
ad iaba t i c  processes since the  to ta l  system Soo~p is comple te ly  isolated.  This  
would  make  it feasible to write  the  to ta l  H a m i l t o n i a n  in the fo rm 

Hcom p = ~/-/(~ comp -I- Hint(t , e) (232) 
with 

H~t(t, e) - e - l t l ' H ~ t  for e--+ + 0 (233) 

where Hint is an in te rac t ion  H a m i l t o n i a n  between S~m and  S ~ .  The  fac tor  
e - i t l ,  means  tha t  the in te rac t ion  could  g radua l ly  be switched on and off for  

each t rans i t ion  of  macroscop ic  state f rom,  say, ]i}l j}x to [ i '} l J '}~ ,  where 
l i}[j}~ denotes  the direct  p roduc t  of  [i} and  [ j}x.  

One also notes tha t  the  in terac t ion  H a m i l t o n i a n  H~t  is no t  Hermi t i an  
since the to ta l  energy in (229) must  be conserved.  ~~ I f  H~ t  were Hermi t ian ,  
a cer ta in  eigenstate  [i"} [j"}~ of  the to ta l  system would  give 

~{j"l{i"lH~t]i">lj">x r 0 (234) 

10 The interaction Hamiltonian H~.t giving rise to transitions in the system imbedded in 
a heat reservoir will be a Hermitian operator if the interaction energy is observable. 
In fact, the time-dependent perturbation theory always requires that the interaction 
energy may be observable. Hence the master equation based upon the time-dependent 
perturbation theory satisfies the microscopic reversibility between conjugate transition 
probabilities because of the Hermitian characteristic of the interaction. However, any 
perturbation theory has a drawback in that transition probabilities may not be con- 
served. This tells us that if and only if a reaction from the heat reservoir with the 
present system is ignored will the master equation with microscopic reversibility keep 
its validity. 

On the other hand, if an almost isolated system is the case, the conservation of 
transition probabilities must be borne in mind because of the finiteness of the system 
no matter how large it may be. The time-dependent perturbation theory, which admits 
both the breakdown in the conservation of transition probabilities and a Hermitian 
interaction Hamiltonian, cannot work any more. Because of the isolatedness of Soo~p, 
the interaction between S~lm and Saux must be adiabatic. The interaction energy 
between Salm and Saux may not be observable once the complete sets {li> } and {]j> ,} 
are defined for S~m and S~ux, respectively, since the interaction would always cause 
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This would apparently lead to contradiction,  since the energy eigenvalue o f  
the Hamil tonian  (232) 

x<j"] (i"l neomp l i") [ j")x  (235) 

would not  equal the conserved energy E, leading to 

E = E~lm(i") + Eaux(J") (236) 

if the Hermit ian proper ty  of  the form (234) held. One can write such a non-  
Hermit ian characteristic as 

x( j ' [ ( i ' lHi~t l i ) [ j )x  ~ x (J l ( i ]Hin t l i ' ) l j ' ) x  (237) 

for certain pair states which are or thogonal ,  

~( j ' lL i ' l i ) [ j ) x  = 0 (238) 

One more  characteristic about  the interaction H~t  is its weakness. Since 
one can choose the auxiliary system Sa~x as small as possible as expressed in 
(225), the strength of  the interaction may be made arbitrarily small though  
it would never vanish. Hence one may think that  the dynamics of  each transi- 
t ion between different macroscopic  states would be subject to a certain 
adiabatic interaction o f  sufficiently low strength. 

The s tandard S-matrix f o r m u l a t i o n w i t h  iteration procedure or, more  
specifically, the covariant  per turbat ion theory is capable of  accounting for a 
process with the adiabatic switching of  weak interactions. Within the lowest 
iteration expansion the S-matrix element 

x<j ' l< i ' lS l i ) l j ) x  

for the transit ion f rom the macroscopic  state l i ) [ j )~  to [ i ' ) [ j ' )~  is found to be 

~ < j ' l ( i ' l a l i ) l j ) ~  = 2rcx(j '[<i'[Hintli)l j)x 

• 8(Ealm(i') q- E~ux(j') - E~a~(i) - E ~ ( j ) )  

(239) 

some changes in the reference states {li> } and {l j >  x} so as to satisfy the conservation 
of both transition probability and energy. The states {1i > } and { IJ > x} could be defined 
only for in and out states of each interaction. On admitting that we are interested in 
the states of S~lm before and after each interaction with S~ux, the present observation 
will force the interaction Hamiltonian H~n~ to be non-Hermitian. 

Consequently, the master equation with microscopic reversibility, which would 
in turn lead to the ergodic hypothesis (cf. Ref. 4), could be established only in a small 
system surrounded by a heat reservoir. 
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The corresponding transition probability per unit time can thus be expressed 
a s  

W ( i ' , j j  <-- i, jx) = (2~/h)lx(J ' l ( i ' lg~, t l i>lj)~I  2 

x 3(Ea~m(i') + Ea~x(j') - Ea~m(i) - Ea,=(j)) 

(240) 

where h is the Planck's constant divided by 27r. Finally, one finds the non- 
symmetric property 

W(i ' , jx"  <-- i, jx) r W(i,  j x + -  i ' , j f )  (241) 

because of the non-Hermitian characteristic (237). 
The broken symmetry in (241) suggests that the almost isolated system 

S~m does not exhibit microscopic reversibility for an adiabatic transition 
process which occurs on a macroscale. 

The probabilistic kinetics of the transition process can be written in the 
form of the kinetic equation of the density matrix, that is, the Pauli master 
equation, as 

(O/Ot)p(i, t) = ~ W(i  ~-  i')p(i',  t) - ~ W(i '+-- i)p(i, t) (242) 

with 
W(i '  <--- i) =- ~ .  W ( i ' , j f  +- i, jx) 

j , ]~ 

where the diagonal element of the density matrix p(i, t) includes the trace as 
for the states of the auxiliary system S~ux. On introducing a certain coarse 
graining in the space of macroscopic states, the probabilistic equation (242) 
reduces to 

(~/~t)pc(i, t) = ~ WC(i+--j)pC(j, t) - ~ Wc(j< -- i)pc(i, t) (243) 

with 
W ~  r W~ --  i) (244) 

where a superscript c means that a certain coarse graining is taken, and where 
the index i runs over each coarse-grained element of the space of those 
macroscopic states. In the present coarse graining a fixed number nc (>> 1) 
of macroscopic quantum states is identified with a coarse-grained macro- 
scopic state. One can proceed with further discussion by following a similar 
analysis as developed in Section 4, replacing the term phase space by the 
space of macroscopic quantum states. 

The asymptotic macrostructure of the almost isolated system will be 
found to be associated with the coarse-grained element S{~ of (69), which 
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necessarily leads to the minimization of the K-entropy as expressed in (70b) or, 
more generally, in (40). The volume measure of the local element S ~  would 
be less than that of the total macroscopic states available to the system S~lm. 
This is due to the fact that the probabilistic kinetics presented in (242) and 
(243) does not exhibit the microscopic reversibility between a pair of macro- 
scopic states as exemplified in (241) and (244). The macrostructure in which 
the representative quantum state is found anywhere inside the local space 
S ~  cannot be further clarified if the coarse-grained macroscopic state S(~ is 
asymptotically recognized in the sense of (86) by an observer employing the 
time unit To of (88) for measurement. If  one wishes to investigate the more 
microscopic kinetics of the representative quantum state inside the coarse- 
grained macroscopic state St~, finer grainings for both the space of the 
macroscopic states and the time unit for measurement must be taken. 

Suppose that the characteristic ry originally defined in (30) is evaluated 
from the probabilistic kinetic equation (243) by following the discussion 
developed in Section 4. The time unit ~-0 for the coarse graining must be much 
greater than %, as seen from (88). If  the observer concerns himself only with 
time-dependent phenomena, or fluctuations whose characteristic time is 
much less than ~-y, it would not always be strictly required to follow fluctua- 
tions within a scheme of the adiabatic processes leading to the all-purpose 
probabilistic kinetics as shown in (243). Although the presence of adiabatic 
processes on a macroscale must always be kept in mind particularly when 
macrokinetics is concerned, it is often noted that any small subsystem im- 
bedded in the almost isolated system S~m exhibits rather microscopic fluctua- 
tions which would seem to be caused by a sort of thermodynamic interaction 
with its outside acting like a heat reservoir. Such thermodynamic fluctuations 
include more than just adiabatic fluctuations, e.g., they also include isothermal 
fluctuations. 

Hence it is appropriate to assume, in the sense of a certain approxima- 
tion, nonadiabatic fluctuations as if they originated in an interaction with a heat 
reservoir only if fluctuations whose characteristic time is much less than ry 
are concerned. A small local portion inside the almost isolated system which 
is always subject to adiabatic processes on a macroscale could sometimes be 
viewed as if undergoing nonadiabatic fluctuations by an observer who does 
not care about the details of the kinetics outside the local region. However, 
one could not imagine nonadiabatic fluctuations whose characteristic times 
are of the order of or much greater than ~-y, since all kinetics with respect 
to the almost isolated system as a whole must be adiabatic. If and only if one 
considers a rather small-scaled kinetics which would not be greatly influenced 
by the totality of the almost isolated system would it be admissible to relax 
to a certain extent the strict condition on adiabatic processes. When one 
employs a statistical mechanical description of an almost isolated system, 
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as is often the case, it should be remarked that nonadiabatic fluctuations could 
not become sufficiently macroscopic, particularly on the time scale involved. 

At first sight it might seem to be of purely academic interest to investigate 
macrofluctuations, whether adiabatic or not, inside an almost isolated system. 
This, however, becomes of practical importance if phase transitions in equi- 
librium are considered. It is commonly believed that as the critical point is 
approached both the divergence of the correlation length and the critical 
slowing down would take place (see, e.g., Ref. 32). In fact, these views have 
strong support from experiments (see, e.g., Ref. 33) and have been verified to 
a certain extent in some model systems. (a4,35~ Nevertheless, one may raise the 
question of whether or not such macrofluctuations leading to both the 
divergence of the correlation length and the critical slowing down would be 
nonadaiabatic. In an almost isolated system the most macroscopic fluctua- 
tions have been argued to be adiabatic instead of nonadiabatic. If  one follows 
the canonical ensemble theory of statistical description which reproduces 
equilibrium thermodynamics, such a violation of the conjugate property in 
fluctuations could not be expected since thermodynamics never excludes 
nonadiabatic fluctuations. Although it might be thought that if one makes 
the almost isolated system infinitely large, both adiabatic and nonadiabatic 
fluctuations could consistently be discussed within the canonical ensemble 
theory, one may not be allowed to take such a limit to infinity, particularly 
from a phenomenological viewpoint accounting for real experiments. 

One should stress the dominance of adiabatic macrofluctuations over 
the nonadiabatic ones near the critical point for a phase transition. Further- 
more, the adiabatic macroftuctuations could not follow the canonical 
ensemble theory, since it would be inappropriate to suppose an infinitely 
large heat reservoir outside the almost isolated system. There have been a 
few attempts to account for the adiabatic macrofluctuations on a heuristic 
basis. Near the critical point one might describe the adiabatic process, which 
is macroscopic, as the appearance of an unstable phase as local clusters in an 
overwhelmingly large area of stable phase. (36,a7~ There is an observation that 
the structural transition encountered in ferroelectrics and antiferroelectrics 
would exhibit a collective excitation, which is sometimes referred to as a 
central peak of the excitation spectrum located at an almost vanishing wave 
number, (38,a9~ manifesting the presence of the macroscopically adiabatic 
process.(40,41~ 

The critical dynamics of the phase transition is an example to indicate 
how the canonical ensemble theory differs from the probabilistic kinetics 
without microscopic reversibility. In general, the ensemble theory of statis- 
tical mechanics employs an ensemble average of any event appearing in an 
infinite time interval. Even macroscopic events lasting over a sufficiently 
large time could not be excluded as members constituting the ensemble. 
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However, if one follows the canonical ensemble theory based upon the 
principle of  a priori equal weight, this would impose a certain restriction on 
events appearing as a member of the relevant ensemble. I f  the principle is 
examined from the viewpoint of  probabilistic kinetics, one must assume 
microscopic reversibility by any means. Otherwise, a certain imbalance in 
the probability density of  the macroscopic state would result as seen in 
Sections 3 and 4. This would apparently contradict the principle of a priori 
equal weight. 

It  has already been pointed out that the probabilistic kinetics of an almost 
isolated system which is subject to fluctuations solely from adiabatic inter- 
actions with a small auxiliary system remaining inside a completely isolated 
system does not exhibit symmetry between conjugate transition probabilities. 
A characteristic property of  broken microscopic reversibility is seen in the 
macrokinetics. I f  the probabilistic kinetic equation without microscopic 
reversibility is linear with respect to a certain variable, the stochastic average 
of the squared intensity of  its fluctuations lasting over the time t will lead to 
an inverse-squared-time characteristic t -2 as discussed in Section 5. On the 
other hand, if the equation is nonlinear, the averaged squared intensity of 
the corresponding fluctuations will yield an inverse-time characteristic t-1. 
The averaged intensity of squared fluctuations could be viewed as a time 
correlation function if a sort of low-pass filter with a sufficiently small cutoff 
frequency is used for extracting only macroscopic events. In the linear case 
the macrofluctuations with correlation function proportional to t -2 for a 
large time t would not display any singular spectrum. However, in the 
nonlinear case one expects a long-time singularity or a logarithmic divergence 
in the low-frequency spectrum since the correlation function of macro- 
fluctuations is proportional to t-1 in a long-t limit. 11 One might expect that a 
nonlinear dynamics characteristic of a phase transition exhibiting a low- 
frequency singularity known as the critical slowing down could also be 
discussed within the present adiabatic kinetics leading to broken microscopic 
reversibility. 
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